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Abstract

Fusion and inference from multiple and massive disparate data sources – the requirement for
our most challenging data analysis problems and the goal of our most ambitious statistical pattern
recognition methodologies – has many and varied aspects which are currently the target of intense
research and development. One aspect of the overall challenge is manifold matching – identifying
embeddings of multiple disparate data spaces into the same low-dimensional space where joint
inference can be pursued. We investigate this manifold matching task from the perspective of
jointly optimizing the fidelity of the embeddings and their commensurability with one another,
with a specific statistical inference exploitation task in mind. Our results demonstrate when and
why our joint optimization methodology is superior to either version of separate optimization.
The methodology is illustrated with simulations and an application in document matching.

1 Introduction

1.1 Motivation
Let (Ξ,F ,P) be a probability space, i.e., Ξ is a sample space, F is a sigma-field, and P is a prob-
ability measure. Consider K measurable spaces Ξ1, · · · ,ΞK and measurable maps πk : Ξ→ Ξk.
Each πk induces a probability measure Pk on Ξk. We wish to identify a measurable metric space
X (with distance function d) and measurable maps ρk : Ξk → X , inducing probability measures
P̃k on X , so that for [x1, · · · , xK ]′ ∈ Ξ1×· · ·×ΞK we may evaluate distances d(ρk1(xk1), ρk2(xk2))
in X . See Figure 1.

Given ξ1, ξ2
iid∼ P in Ξ, we may reasonably hope that the random variable d(ρk1 ◦πk1(ξ1), ρk2 ◦

πk2(ξ1)) is stochastically smaller than the random variable d(ρk1 ◦πk1(ξ1), ρk2 ◦πk2(ξ2)). That is,

∗Corresponding Author: Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore,
MD 21218-2682 ; cep@jhu.edu . This work is partially supported by National Security Science and Engineering
Faculty Fellowship (NSSEFF), Air Force Office of Scientific Research (AFOSR), Office of Naval Research (ONR),
Johns Hopkins University Human Language Technology Center of Excellence (JHU HLT COE), and the American
Society for Engineering Education (ASEE) Sabbatical Leave Program.
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matched measurements πk1(ξ1), πk2(ξ1) representing a single point ξ1 in Ξ are mapped closer to
each other than are unmatched measurements πk1(ξ1), πk2(ξ2) representing two different points
in Ξ. This property allows inference to proceed in the common representation space X .

However, we do not observe ξ ∈ Ξ; we also do not observe the xk = πk(ξ) ∈ Ξk directly, nor
do we have knowledge of the maps πk. But suppose we have access to functions δk : Ξk × Ξk →
R+ = [0,∞) such that δk(πk(ξ1), πk(ξ2)) represents the “dissimilarity” of outcomes ξ1 and ξ2
under map πk. We propose to use sample dissimilarities for matched data in the disparate
spaces Ξk to simultaneously learn maps ρk which allow for a powerful test of matchedness in the
common representation space X .

Ξ

· · ·Ξ1 ΞK

π1 πK

ρ1 ρK

X
Figure 1: Maps πk induce disparate data spaces Ξk from “object space” Ξ. Manifold matching involves
using matched data {xik} to simultaneously learn maps ρ1, . . . , ρK from disparate spaces Ξ1, . . . ,ΞK

to a common “representation space” X , for subsequent inference.

1.2 Problem Formulation
Consider n objects each measured under K different conditions,

xi1 ∼ · · · ∼ xik ∼ · · · ∼ xiK , i = 1, . . . , n,

where xi1 ∼ · · · ∼ xik ∼ · · · ∼ xiK denotes K matched measurements π1(ξi), · · · , πK(ξi)
representing a single object ξi ∈ Ξ, where Ξ denotes the “object space”. The assumption of K
different conditions implies that xik ∈ Ξk where the spaces Ξ1, · · · ,ΞK cannot be assumed to be
similar. We are givenK new measurements {yk}Kk=1, yk ∈ Ξk. The question under consideration
is: Does the collection {yk}Kk=1 also correspond to matched measurements representing a single
object measured under the K conditions?

We use the Ξ notation to remind the reader that the spaces Ξk cannot be assumed to be stan-
dard finite-dimensional Euclidean spaces. We do assume that each space Ξk comes with a within-
condition dissimilarity δk – a hollow, symmetric function from Ξk×Ξk to R+ – through which the
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matched data {xik} yields n×n dissimilarity matrices ∆k, k = 1, · · · ,K. For new measurements
{yk}Kk=1 we have available for each k the within-condition dissimilarities δk(yk,xik), i = 1, . . . , n.

Remark 1: The xik and yk are introduced mainly for symbolic purposes; the corresponding
data may not be available or may be too complex to use directly, and we proceed from the
dissimilarities.

The specific statistical inference exploitation task we consider throughout most of this article
is hypothesis testing. Our goal, simplified for the case K = 2, is to determine whether y1 and
y2 are a match. That is,

H0 : y1 ∼ y2 versus HA : y1 � y2,

or equivalently,

H0 : y1 = π1(ξ),y2 = π2(ξ) versus HA : y1 = π1(ξ),y2 = π2(ξ
′) for ξ 6= ξ′ ∈ Ξ.

(We control the probability of missing a true match.)

1.3 Manifold Matching
We define manifold matching as simultaneous manifold learning and manifold alignment – iden-
tifying embeddings of multiple disparate data sources into the same low-dimensional space where
joint inference can be pursued. Figure 1 depicts our framework. Conditional distributions are
induced by maps πk from “object space” Ξ. Our assumption is that the conditional spaces Ξk are
not commensurate. For example, if the elements of Ξ are individual people, then a photograph
in image space Ξ1 and a biographical sketch in text document space Ξ2 are not to be directly
compared. Indeed, our fundamental premise defining disparate data sources is that the various
Ξk cannot profitably be treated as replicates of the same kind of space. Rather, the various
spaces are different not just in degree but in kind. Each dissimilarity δk has been tailored for
application to Ξk, and it is inappropriate to apply δk on Ξk × Ξk′ for k′ 6= k. This distinguishes
our data fusion from conventional multivariate analysis.

In Figure 1, matched points {xik} are used to simultaneously learn appropriate maps ρk
taking the disparate data from the various Ξk into a common representation space X . These
maps are then applied to {yk}Kk=1 yielding ỹk = ρk(yk), whence (forK = 2) we use T = d(ỹ1, ỹ2)
as our test statistic and reject for T “large”.

Remark 2: Our convention is to use the “ ·̃ ” notation for points in the target space X ,
contrasted with no tilde for points in the original Ξk spaces.

Remark 3: We will throughout consider the special case of X = Rm for some pre-specified
target dimension m. The fundamentally important and challenging task of choosing the target
dimension – model selection – will be considered only as a confounding issue in this paper; m
is a nuisance parameter which must be selected but whose selection is beyond the scope of this
manuscript.

1.4 What are these “conditions” and what does “matched” mean?
As suggested above, one example of “conditions” involves photographs {xi1} and biographical
sketches {xi2}, with “matched” xi1 ∼ xi2 meaning that the photograph xi1 and the biographical
sketch xi2 are of the same person.

Other illustrative examples include: a general image & caption scenario, with “matched”
meaning that they go together; multiple languages for text documents, with “matched” mean-
ing on the same topic; multiple modalities for photographs (e.g., indoor lighting vs outdoor
lighting, two cameras of different quality, or passport photos and airport surveillance photos),
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with “matched” meaning of the same person; Wikipedia text document and Wikipedia hyperlink
structure, with “matched” meaning of the same document. More generally, our framework may
be applicable to any scenario in which multiple dissimilarity measures are applied to the objects
at hand.

Fundamentally, “matched” means whatever the training data say it means. We know it when
we see it – or, perhaps more accurately, we know unmatched when we see it; see Figure 2.
Consider, for instance, an example of multiple languages for text documents, with “matched”
meaning on the same topic. Given English and French Wikipedia documents with the matching
provided by Wikipedia itself, “matched” means “on the same topic.” But of course the Wikipedia
documents are not direct translations of one another, and documents in different languages on
the same topic may have significant conceptual differences due to cultural differences, etc.

Figure 2: An example of “not matched” for multi-lingual text documents. The English is clear
enough to lorry drivers — but the Welsh reads “I am not in the office at the moment. Send any work
to be translated.” (See http://news.bbc.co.uk/2/hi/uk_news/wales/7702913.stm; permission
obtained from http://www.golwg360.com/Hafan/default.aspx.)

1.5 Dirichlet Setting
While the matched training data ultimately determine what “matched” means, in order to provide
a clear mathematical characterization of matchedness we consider an illustrative Dirichlet setting.
This setting is clearly overly simplified, but it invokes some aspects of the foregoing example of
multiple languages for text documents.

Let Sp = {x ∈ Rp+1
+ :

∑p+1
`=1 x` = 1} be the standard p-simplex. We consider here the case

Ξ1 = Sp and Ξ2 = Sp – the two spaces are, in fact, commensurate in this case, for illustration.
Let γi

iid∼ Dirichlet(1) represent n “objects” or “topics”. Let Xik
iid∼ Dirichlet(rγi + 1) represent

document i in language k. (Since the Xik take their value in Sp, we can think of them as
modelling (normalized) word count histograms with p+1 distinct words. Ξ1 = Ξ2 = Sp suggests
a simplified 1-1 word correspondence model. A permutation σ indicating that the 1-1 word
correspondence is unknown may be applied to the dimensions of one space with no alteration
to our illustration.) In this case, r controls what it means to be matched – e.g., document
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translation quality analogy. If r is large (highly accurate translations), then matched documents
Xi1 and Xi2 will be probabilistically more similar than Xi1 and Xi′2 for i 6= i′; if r is small (rough
translations), then “matched” doesn’t mean much. Indeed, the limiting case of r → ∞ (point
masses) yields “matched” means “identical” while r = 0 (recall that Dirichlet(1) is uniform
on the simplex) yields “matched” means “no relationship”. Figure 3, with p = 2, provides
an illustration wherein matched means quite a lot. A real data version of this setting with
multiple documents per topic is depicted in Figure 4, where three Linguistic Data Consortium
(LDC) Enron email message topic classes are projected into the simplex S2 via Fisher’s Linear
Discriminant composed with Latent Semantic Analysis (FLD◦LSA) (see, e.g., [1, 2, 3]).

1
r

γi
Xi1

γi
Xi2

Ξ2Ξ1
1
r

Figure 3: Illustrative Dirichlet setting wherein Xik
iid∼ Dirichlet(rγi + 1) represent documents i =

1, . . . , n = 10 in languages k = 1, . . . , K = 2 in the standard 2-simplex S2. The parameter r
controls the meaning of matchedness – the similarity of matched documents Xi1 and Xi2 compared
to unmatched documents Xi1 and Xi′2 for i 6= i′.

1.6 Related Work
The 2006 David Hand polemic [4] argued persuasively that a fundamental issue in statistical
inference research and development – perhaps the fundamental issue – is robustness in the face
of test data drawn from a distribution not the same as the distribution from which the training
data are drawn. The disparate information fusion described above – combining multiple spaces
with different characteristics – provides a setting for investigation of related issues. The recent
survey [5] considers a wide range of examples and methodologies addressing this phenomenon in
terms of transfer learning, domain adaptation, multitask learning, etc. The recent special issue
[6] is devoted entirely to dimensionality reduction via subspace and submanifold learning. The
majority of this article considers the Neyman-Pearson hypothesis testing setting, which provides
clarity through the most straightforward of inference tasks. In Section 5.2 we briefly consider a
ranking task.

Our dissimilarity-centric approach is motivated by the 2005 Pekalska and Duin book [7] on
the dissimilarity representation for pattern recognition and the far-reaching success of multidi-
mensional scaling methodologies [8, 9, 10, 11]
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Figure 4: An example considering the FLD◦LSA projection into S2 of multiple Enron email mes-
sages identified with three Linguistic Data Consortium (LDC) topics. The three colored scatterplots
– yellow, red, purple – represent documents from the three topics; the green dots represent the
topic means. We see that “matched”, meaning “on the same topic”, does mean something quite like
Dirichlet(rγtopic + 1) in this case (but the variability “r” may be topic-dependent).

Combining information from disparate data sources when the information in the various
spaces is fundamentally incommensurate – that is, a separate collection of useful features can
be extracted from each space but their interpoint geometry precludes profitable alignment in a
common space – is considered via Cartesian product space embedding in [12].

Preliminary development of our joint optimization methodology presented herein, as well as
an application to classification tasks, is presented in [13].

1.7 Summary
In Section 2 we frame the problem as an optimization problem, and lay the groundwork for the
methodologies proposed in Section 3. Section 4 illustrates the methodologies with instructive
simulations that illustrate characteristic behavior; in particular, a simulation involving Dirichlet
random variables sets the stage for the experimental examples on text documents presented in
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Section 5. Finally, Section 6 provides discussion and suggestions for several areas of continuing
research.

2 Fidelity and Commensurability
As suggested in Figure 1, our goal is to identify maps ρk taking Ξk to Rm (for some pre-specified
m) such that (for K = 2) the power of the test, P [d(ỹ1, ỹ2) > cα|HA : y1 � y2], is large, where
the critical value cα is determined by the null distribution of the test statistic and the allowable
Type I error level α.

We proceed using `2 error for convenience and simplicity; clearly there is ample reason to
consider other error criteria for particular applications. Similarly, we will assume symmetric
dissimilarities δk.

The available matched points {xik} are used to identify appropriate maps ρk. Fidelity is
how well the mapping xik 7→ x̃ik preserves original dissimilarities. The within-condition squared
fidelity error is given by

ε2fk =
1(
n
2

) ∑
1≤i<j≤n

(d(x̃ik, x̃jk)− δk(xik,xjk))2

for each k. If the fidelity error is large, then it is likely that the mapping does not capture aspects
of original data that may be needed for inference.

On the other hand, even if all fidelity errors are small, inference may fail if d(ỹ1, ỹ2) is large
under the “matched” null hypothesis H0 : y1 ∼ y2. Commensurability is how well the mappings
preserve matchedness; the between-condition squared commensurability error is given by

ε2ck1k2
=

1

n

∑
1≤i≤n

(d(x̃ik1 , x̃ik2)− δk1k2(xik1 ,xik2))2.

Alas, δk1k2 does not exist – we have no dissimilarity on Ξk1 × Ξk2 . However, the concept of
“matchedness” suggests that it might be reasonable to set δk1k2(xik1 ,xik2) = 0 for all i, k1, k2, in
which case the commensurability error is the mean squared distance between matched points –
the same criterion optimized by the Procrustes matching employed below.

There is also between-condition squared separability error given by

ε2sk1k2
=

1(
n
2

) ∑
1≤i<j≤n

(d(x̃ik1 , x̃jk2)− δk1k2(xik1 ,xjk2))2.

However, it is less clear how to identify a reasonable stand-in for the δk1k2 terms in this expres-
sion. We will return to this issue when presenting our joint optimization inference methodology
proposal in Section 3.3 below.

If all these errors are small – and if the target dimensionality is low enough so that estimation
variance does not dominate (see e.g. [14] Section 3 and [15] Figure 12.1) – then successful inference
in the target space may be achievable. The idea of the joint optimization method proposed in
this manuscript (Section 3.3) is to attempt to minimize all three of these errors simultaneously.

3 Inference Methodologies
In this section we present three methodologies for performing our manifold matching inference –
one which focuses on fidelity and is based on multidimensional scaling and Procrustes matching,
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one which focuses on commensurability and is based on canonical correlation analysis, and then
our proposal for joint optimization of fidelity and commensurability.

Before proceeding, we briefly review multidimensional scaling, Procrustes matching, and
canonical correlation analysis.

Multidimensional scaling (MDS) takes an n× n dissimilarity matrix ∆ = [δij ] and produces
a configuration of n points x̃1, . . . , x̃n in a target metric space endowed with distance function
d such that the collection {d(x̃i, x̃j)} agrees as closely as possible with the original {δij} under
some specified error criterion; see for instance [8, 9, 10, 11]. For example, `2 (also known as “raw
stress”) MDS minimizes

∑
1≤i<j≤n(d(x̃i, x̃j)− δij)2.

Out-of-sample embedding is used throughout this paper – given a configuration {x̃i}ni=1 of the
training observations and dissimilarities between test observations and the training observations,
the test points are embedded into the existing configuration so as to be as `2-consistent as possible
with these dissimilarities. This out-of-sample embedding can be one at a time, or jointly if the
dissimilarities among multiple test observations are also available. Trosset and Priebe [16] present
the out-of-sample methodology appropriate for classical MDS embeddings. We use raw stress
embeddings herein, and the appropriate corresponding out-of-sample methodology is presented
in [17].

Procrustes matching [18, 19, 20, 21] takes two matched collections X̃1 and X̃ ′2 of n points in
Rm and finds the rigid motion transformation which optimally aligns the two collections. For
example, `2 Procrustes minimizes the Frobenius norm ‖X̃1 − X̃ ′2Q‖F over all m ×m matrices
Q such that QTQ = I. (We assume the dissimilarities have been scaled so that a scaling is not
required in the Procrustes mapping. Thus Q defines a rigid motion mapping X̃ ′2 “onto” X̃1. We
address this issue briefly in Section 6.)

Canonical correlation analysis (CCA) takes a collection X1 of n1 points in Rm1 and a collec-
tion X2 of n2 points in Rm2 and finds the pair of linear maps U1 : Rm1 → R and U2 : Rm2 → R
which maximizes the correlation between X̃1 = U1(X1) and X̃2 = U2(X2). Performing m iter-
ations of this procedure in the successive orthogonal subspaces yields a CCA procedure which
maps to Rm. See, for instance, [22, 23, 24].

Let us now consider these tools as building blocks for manifold matching inference.

3.1 Procrustes ◦ MDS
Multidimensional scaling yields low-dimensional embeddings. That is, ∆1 7→ X̃1 and ∆2 7→ X̃ ′2
yields n×m configurations. Procrustes(X̃1, X̃

′
2) yields

Q∗ = arg min
QTQ=I

‖X̃1 − X̃ ′2Q‖F .

Given δk(yk,xik), i = 1, . . . , n for k = 1, 2, out-of-sample embedding of the test data gives
y1 7→ ỹ1, y2 7→ ỹ′2 where the embedded points are chosen so that their distances to x̃ik agree
as closely as possible with the available dissimilarities. Using the rigid motion transformation
obtained in the Procrustes step, both ỹ1 and ỹ2 = ((ỹ′2)

TQ∗)T are in Rm with same coordinate
system. Thus inference may proceed by rejecting for large values of d(ỹ1, ỹ2). We dub this
separate embedding approach “Procrustes composed with multidimensional scaling”, or “p◦m”.

From an inspection of the raw stress multidimensional scaling criterion function, it follows
immediately that the ∆k 7→ X̃k mappings minimize fidelity error. Thus we have established the
following result:

Theorem 1: p◦m optimizes fidelity without regard for commensurability.
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That is, the maps ρk are identified separately, with no concern for whether the commensu-
rability optimization in the Procrustes step will be able to provide a good alignment.

3.2 Canonical Correlation
Since canonical correlation begins with Euclidean data, the first step of this methodology neces-
sarily involves multidimensional scaling. This appears similar to Procrustes ◦ MDS above, but
in this case no attempt is made to achieve meaningful dimensionality reduction. Multidimen-
sional scaling yields high-dimensional embeddings, ∆1 7→ X ′1 and ∆2 7→ X ′2, but in this case
these maps are to the highest-dimensional space possible, Rn−1 in general. Canonical correlation
finds linear maps to Rm, U1 : X ′1 7→ X̃1 and U2 : X ′2 7→ X̃2, to maximize correlation. Again,
out-of-sample embedding yields (n−1)-dimensional points y1 7→ y′1, y2 7→ y′2. Then ỹ1 = UT1 y

′
1

and ỹ2 = UT2 y
′
2 can be directly compared. An investigation of the correlation criterion function

shows that the CCA maps U1 and U2 minimize commensurability error, subject to linearity.
Thus there is no need for Procrustes in this case, and once again inference may proceed: reject
for large values of d(ỹ1, ỹ2). We dub this approach “cca”.

From the equivalence of the correlation objective function and commensurability error, we
have established the following result:

Theorem 2: cca optimizes commensurability without regard for fidelity.

That is, the maps ρk are identified jointly, but with no concern for fidelity of the individual
embeddings (beyond linearity).

3.3 Omnibus Embedding
In response to the optimization objectives of the two methodologies presented above – one con-
sidering fidelity only and the other considering commensurability only – we develop an omnibus
embedding methodology explicitly focused on the joint optimization of fidelity and commensu-
rability.

M
2n×2n

=
∆1

n×n

∆2

n×n

W
n×n

u1

n×1

u1 v1

u2
n×1

W

u2

v1
n×1

v2
n×1

v2

T

T T

T T

y1
y2

Figure 5: Depiction of the 2n×2n omnibus dissimilarity matrixM , including imputed dissimilarities
W = [δ12(xi1,xj2)] and out-of-sample test data y1,y2.
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Under the “matched” assumption, we impute dissimilarities W = [δ12(xi1,xj2)] to obtain a
2n × 2n omnibus dissimilarity matrix M . See Figure 5, which depicts M as a block matrix
consisting of the n× n dissimilarities matrices ∆1 and ∆2 on the diagonal and W as the n× n
off-diagonal block. (This generalizes immediately to K > 2.) As discussed above, it seems
reasonable underH0 to set the diagonal elements δk1k2(xik1 ,xik2) ofW to zero. (Notice, however,
that δk1k2(xik1 ,xik2) = 0 for k1 6= k2 is not necessarily “truth.” For instance, the Dirichlet setting
of Section 1.5 with r < ∞ would have non-zero elements for diag(W ). Still, this “shrinkage” of
diag(W ) to zero seems reasonable.) As for the off-diagonal elements of W , we argue that either
leaving them as missing data unused in the subsequent optimization or lettingW = (∆1+∆2)/2
are reasonable suggestions; we will return to this imputation issue later. Once we have settled
on W , our approach considers MDS embedding of M as 2n points in Rm – zeros on the diagonal
of W act to force matched points to be embedded near each other. It is clear that raw stress
MDS applied toM has as its objective function precisely ε2f1 + ε2f2 + ε2c12 + ε2s12 . If diag(W ) = 0
and the off-diagonal elements are treated as missing and ignored in the optimization, then this
objective function reduces to a consideration of just fidelity and commensurability.

Let ui1 = δ1(y1,xi1) and vi2 = δ2(y2,xi2). Under H0, impute vi1 = δ12(y1,xi2) and ui2 =
δ12(y2,xi1) via v1 = u2 = (u1 + v2)/2. Out-of-sample embedding of (uT1 ,v

T
1 )T and (uT2 ,v

T
2 )T

yields ỹ1 and ỹ2. Reject for large values of d(ỹ1, ỹ2). We dub this omnibus embedding approach
for joint optimization of fidelity and commensurability “jofc”.

Obviously, the choice of W is key for this joint optimization. Also, note that weights can be
incorporated into the MDS optimization criterion; this weighting can become quite elaborate,
but in its simplest form it yields a more general tradeoff between fidelity and commensurability
via ω(ε2f1 + ε2f2) + (1− ω)ε2c12 .

4 Illustrative Simulation
In this section we present an illustrative Dirichlet simulation which helps to elucidate when and
why our joint optimization methodology is superior to either version of separate optimization.

4.1 Dirichlet Product Model
We describe a probability model with parameters p, q, r, a, and K.

Let Ξk = Sp+q, k = 1, 2. Here the simplex Sp encodes “signal” and the simplex Sq en-
codes “noise”. That is, on Sp we let γi

iid∼ Dirichlet(1) and mutually independent X1
ik ∼

Dirichlet(rγi + 1) (signal, as in Section 1.5) while on Sq we let X2
ik

iid∼ Dirichlet(1) (pure
noise). For a ∈ [0, 1], let Xik = [(1 − a)X1

ik, aX
2
ik] – the concatenation of (weighted) signal and

noise dimensions. The resultant distribution for (Xi1, · · · , XiK) is denoted by Fp,q,r,a,K , and
Fp,q,r,a,K|γ1,··· ,γn

denotes the distribution conditional on the location of the γi.

4.2 Testing
For each of nmc Monte Carlo replicates (nmc = 1000 in the simulations), we generate n matched
pairs according to the Dirichlet product model distribution Fp,q,r,a,K=2 by first generating γ1, . . . ,γn
and then, conditional on the collection {γi}, generating the matched pair (Xi1, Xi2). Embed-
dings are defined for each of the three competing methodologies based on this matched training
data. For each test datum under H0, one new γ is generated, a matched pair is generated, out-
of-sample embedding is performed, and the statistic T = d(ỹ1, ỹ2) is calculated; this is repeated
s times independently (s = 1000 in the simulations) and the critical value cα for the allowable

10



Type I error level α is determined based on the Monte Carlo estimate of null distribution of
T . Then unmatched pairs are generated, out-of-sample embedding is performed, and the statis-
tic T is calculated for test data under HA; this provides an estimate of the conditional power
P [d(ỹ1, ỹ2) > cα|HA,γ1, . . . ,γn].

We perform nmc Monte Carlo replicates to integrate out the γ1, . . . ,γn, yielding comparative
power estimates. We also investigate conditional power for particular collections {γi}, in order
to better understand precisely when and why our joint optimization methodology is superior to
either version of separate optimization.

4.3 Results
Figure 6 presents results from our Dirichlet product model. K = 2, with p = 3, q = 3, r =
100, a = 0.1. The target dimension is m = 2. We use n = 100. The allowable Type I error level
α is plotted against power β = P [d(ỹ1, ỹ2) > cα|HA]. The results are based on nmc = 1000
Monte Carlo replicates with s = 1000; the differences in the curves are statistically significant.
In this case, jofc with W = (∆1 + ∆2)/2 is superior to both p◦m and cca.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α

β

jofc
pom
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Figure 6: Dirichlet product model simulation results plotting the Type I error level α against power
β = P [d(ỹ1, ỹ2) > cα|HA], indicating that jofc is superior to both p◦m and cca. See text for
description.
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4.4 Analysis
The Dirichlet product model is designed specifically to illustrate when and why jofc is superior
to both p◦m and cca in terms of fidelity and commensurability.

If q is large with respect to the target dimensionality m, then with high probability cca will
identify a m−dimensional subspace in the “noise” simplex Sq with spurious correlation. This
phenomenon requires only that a > 0. In this event, the out-of-sample embedding will produce
arbitrary ỹ1 and ỹ2, even under H0. Thus the null distribution of the test statistic will be
inflated by these spurious correlations. If the allowable Type I error level is smaller than the
probability of inflation, then the power of the cca method will be negatively affected.

If a is small andm ≤ p, then with high probability them−dimensional subspaces identified by
the MDS step will come from the “signal” simplex Sp. If m < p, then with positive probability,
these two subspaces, identified separately in p◦m, will be geometrically incommensurate (see
Figure 7). Thus the null distribution of the test statistic will be inflated by these incommensurate
cases. If the allowable Type I error level α is smaller than the probability of inflation, then the
power of the p◦m method will be negatively affected.

For large q and small a, the two phenomena described above occur in the same model. The
jofc method is not susceptible to either phenomenon: incorporating fidelity into the objective
function obviates the spurious correlation phenomenon, and incorporating commensurability into
the objective function obviates the geometric incommensurability phenomenon. Thus we can es-
tablish that, for a range of Dirichlet product model distributions, jofc is superior to both p◦m
and cca.

Theorem 3: Let m ∈ {1, · · · ,min{p − 1, q}}, a ∈ (0, 1/2), and r ∈ (0,∞). Then for
large q, small a, and large r, there exists allowable Type I error level α > 0 such that the
Dirichlet product model distribution Fp,q,r,a,K=2 with target dimensionality m yields power
βjofc > max{βp◦m , βcca}, where power β = P [d(ỹ1, ỹ2) > cα|HA] for the various testing method-
ologies jofc, p◦m, and cca.

Proof: Let b1 denote the probability that cca suffers from the spurious correlation phe-
nomenon, and let b2 denote the probability that p◦m suffers from the geometric incommensu-
rability phenomenon. Then q � p implies that cca suffers from the spurious correlation phe-
nomenon with high probability and thus b1 ≈ 1 and βcca ≈ α. For a ≈ 0 and r sufficiently large,
jofc and p◦m identify approximately the same embeddings except for the cases in which p◦m
suffers from the incommensurability phenomenon. Thus the null distribution of T = d(ỹ1, ỹ2)
for jofc is approximately point mass at zero while the null distribution of T for p◦m has b2 mass
� 0. Hence α ≈ b2/2 yields βjofc ≈ 1 while βp◦m ≈ 1/2.�

Delving into our simulation results via investigation of conditional power P [d(ỹ1, ỹ2) >
cα|HA,γ1, . . . ,γn], it is apparent that the superiority of jofc is indeed due to occurrences of
the phenomena described above – individual Monte Carlo replicates (particular selections of the
{γi}, essentially) are identified in which the spurious correlation phenomenon causes poor per-
formance for cca or the incommensurability phenomenon causes poor performance for p◦m but
in which jofc is unaffected.

We note that the Dirichlet product model introduced here as an aid in understanding when
and why jofc is superior to both p◦m and cca does in fact (loosely) model general high-dimensional
real data scenarios: many dimensions consisting mostly of noise along with a few signal dimen-
sions.
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Figure 7: Idealization of the incommensurability phenomenon: for a symmetric collection
{γ1,γ2,γ3,γ4} in the simplex S3, all four of the facet projections have the same fidelity and are
geometrically incommensurable with one another.
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4.5 Gaussian Model
A Gaussian model, analogous to the Dirichlet product model investigated above, is constructed
here to provide a sense of the generality of models with many dimensions consisting mostly of
noise along with a few signal dimensions.

We consider p-dimensional means µi
iid∼ N

(
~0, Ip

)
, i = 1, · · · , n, analogous to the γi from the

Dirichlet model. Matchedness arises from independent X1
ik ∼ N

(
µi, r

−1Ip
)
, i = 1, . . . , n, k =

1, . . .K, for r ∈ (0,∞); as r increases, the degree of matchedness increases. As before, we have
q-dimensional “noise” vectors X2

ik
iid∼ N

(
~0, Iq

)
. Again, for a ∈ [0, 1], Xik = [(1 − a)X1

ik, aX
2
ik]

represents the concatenation of (weighted) signal and noise dimensions. As with the Dirichlet
product model, both the spurious correlation phenomenon and the geometric incommensurability
phenomenon are present in this Gaussian model.

Figure 8 presents simulation results for this Gaussian model, entirely analogous to those
depicted in Figure 6.
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Figure 8: Gaussian model simulation results plotting the Type I error level α against power β =
P [d(ỹ1, ỹ2) > cα|HA], indicating jofc is superior to both p◦m and cca, entirely analogous to those
presented for the Dirichlet product model in Figure 6.
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5 Experimental Results

5.1 Testing
A collection of documents {xi1}ni=1 are collected from the English Wikipedia, corresponding to
the directed 2-neighborhood of the document “Algebraic Geometry.” This yields n = 1382 and,
through Wikipedia’s own 1-1 correspondence, the associated French documents {xi2}ni=1. For
dissimilarity matrices ∆k, k = 1, 2, we use the Lin & Pantel discounted mutual information
[25, 26] and cosine dissimilarity δk(xik,xjk) = 1− (xik · xjk)/(‖xik‖2‖xjk‖2).

Our results are obtained by repeatedly randomly holding out four documents – two matched
pairs – and identifying the embeddings via cca, p◦m, and jofc based on the remaining n = 1380
matched pairs. The two sets of held-out matched pairs are used as y1 and y2, via out-of-sample
embedding, to estimate the null distribution of the test statistic T = d(ỹ1, ỹ2). This allows
us to estimate critical values for any specified Type I error level. Then the two sets of held-
out unmatched pairs are used as y1 and y2, via out-of-sample embedding, to estimate power.
Target dimensionalitym is determined by the Zhu and Ghodsi automatic dimensionality selection
method [27], resulting in m = 6 for this data set.

Figure 9 plots the allowable Type I error level against power. These experimental results
indicate that jofc is superior to both p◦m and cca, and are entirely analogous to the simulation
results presented above.

5.2 Ranking
Here we consider a ranking task in which matched training data exists in disparate spaces Ξ1

and Ξ2, but test observation y2 will be observed in space Ξ2. The task is to find the match for
y2 amongst a candidate collection C = {y11, · · · ,yz1} ⊂ Ξ1 of z > 1 possibilities. Using the
training set of matched observations, we identify the embeddings via cca, p◦m, and jofc, and
out-of-sample embedding then yields ỹ2 and C̃ = {ỹ11, · · · , ỹz1}. The rank r∗ of the one true
match to y2 amongst the candidate collection C in terms of {d(ỹζ1, ỹ2)}zζ=1 is our measure of
performance; r∗ = 1 represents perfect performance, r∗ = z/2 represents chance, and r∗ = z is
the worst possible.

For this experiment we consider a different collection of Wikipedia documents: all En-
glish/Persian (Farsi) matched pairs (matched, again, through Wikipedia’s own 1-1 correspon-
dence) for which both documents in the pair contain at least 500 total words and at least 100
distinct words. There are 2448 such pairs. (The word-count restrictions are to ensure that the
documents are legitimate articles, rather than “stubs” – place-holders for future articles on the
topic.)

Figures 10 and 11 present notched boxplot experimental results wherein we repeatedly hold
out z = 1000 matched pairs from the training set. (Recall that non-overlapping notches implies
a statistically significant difference of means.) Figure 10 depicts r∗ as a function of target
dimension m for jofc (gray) and p◦m (white). Performance improves for both methods as m
increases from 5 to 25, with jofc superior. Performance levels off after m = 30 (and degrades
significantly for m > 50). Figure 11 depicts difference in ranks, r∗p◦m − r∗jofc ; differences greater
than 0 indicate jofc superiority.
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Figure 9: Experimental results on English/French Wikipedia documents plotting the Type I error
level α against power β = P [d(ỹ1, ỹ2) > cα|HA], indicating jofc is superior to both p◦m and cca. See
text for description.

6 Discussion and Conclusions
We have presented a complete methodological core for manifold matching via joint optimiza-
tion of fidelity and commensurability and comprehensive comparisons with either version of
separate optimization. Continuing research includes comparison with other standard compet-
ing methodologies, variations and generalizations of our omnibus embedding methodology, and
further theoretical developments.

Here we discuss a few of the most pressing issues.

K > 2 Conditions

It is straightforward to generalize the omnibus dissimilarity matrix M to the case of K > 2
conditions.

Pre-Scaling the ∆k

The scale of the various dissimilarities has been assumed to be consistent. For Dirichlet data, this
assumption is warranted; however, pre-scaling of the ∆k prior to constructing M is imperative
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Figure 10: Comparative rank experimental results depicting the rank r∗ of the one true match to
test observation y2 amongst the candidate collection C in terms of {d(ỹζ1, ỹ2)}zζ=1 as a function of
target dimension m. For each m ∈ {5, 10, 15, · · · , 50}, there are two boxplots. These results indicate
that jofc (gray) is superior to p◦m (white) on this data set. With z = 1000, both methods perform
much better than chance (r∗ = z/2), although performance does not achieve perfection (r∗ = 1). See
text for description.

for the general case.

MDS Objective

Our omnibus embedding methodology can be employed with MDS criteria other than raw stress;
the `2 criterion provides direct correspondence to fidelity and commensurability. Weighted `2 is
straightforward. Other MDS minimization objectives have been studied in depth, and should in
particular circumstances provide superior performance.

Imputation of W

It seems reasonable under H0 to set the diagonal elements δk1k2(xik1 ,xik2) of W to zero. Recall,
however, that this is not necessarily “truth;” the Dirichlet setting of Section 1.5 with r <∞ would
have non-zero elements for diag(W ). Still, this shrinkage of diag(W ) to zero seems reasonable.
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Figure 11: Comparative rank experimental results depicting difference in ranks r∗p◦m−r∗jofc; differences
greater than 0 indicate jofc superiority. See text for description.

However, there may be cases for which imputing non-zero values would be appropriate; for
example, if information is available suggesting that some matchings are unreliable, then it might
be advantageous to use larger values for these matchings.

As for the off-diagonal elements ofW , we have argued that either leaving them as missing data
unused in the subsequent optimization or letting W = (∆1 + ∆2)/2 are reasonable suggestions.
We believe that more elaborate imputation should provide superior performance. In particular, it
seems clear that choosing λ ∈ [0, 1] and settingW = λ∆1+(1−λ)∆2 orW = (λ∆2

1+(1−λ)∆2
2)

1/2

will be preferable in certain circumstances.

Model Selection: The Choice of Target Dimensionality m

We have assumed throughout that X = Rm for some pre-specified target dimension m. First,
we note that, in general, embedding into target spaces other than Euclidean is possible and
sometimes productive. More pressing is the necessity, in many applications, for data-driven
choice of target dimension. This is in general a vexing model selection task – the bias-variance
trade-off. Of course, m = 1 generally induces significant model bias and m = n − 1 generally
admits excessive estimation variance, as characterized in [15] Figure 12.1. Many dimensionality
selection methods based on the principle of diminishing returns in terms of variance explained
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are available – in Section 5.1 we made use of the method proposed in [27], and in 5.2 we presented
results as a function of m. A dimensionality selection methodology specifically designed for use
with our omnibus embedding methodology is of significant interest.

One illustrative point in this regard is that the general commensurate-space approach con-
sidered throughout this article – for all three approaches jofc, p◦m, and cca – adds a further
complication with respect to identification of optimal target dimension: the optimal target di-
mension m∗k for the various ∆k will not the be same. This adds to the degree of difficulty in
designing methods for identifying the optimal common-space target dimension m∗.

Learning the πk

We have assumed that the maps πk from object space Ξ to the conditional spaces Ξk are fixed
(see Figure 1). Indeed, Ξ and the πk have been treated as notional only. In some circumstances,
it may be possible to use performance analyses to glean information concerning the induced
conditional distributions and profitably adjust the πk, in a manner analogous to fusion frames
[28].

Fast Omnibus Embedding

Out-of-sample embedding of test data precludes re-learning the mappings for each inference.
More importantly, it is straightforward to make a version of our omnibus embedding methodology
fast (O(n)). Making an effective fast version requires numerous methodological choices for various
stages of jofc.

Commensurability Error vs Hausdorff Distance on Gp,m

In the simple setting of Euclidean spaces Ξk, the p◦m methodology yields two elements of the
Grassmann space Gp,m of m-dimensional subspaces of Rp. This space is a manifold under
the Hausdorff distance 2 sin(θ/2), where θ is the canonical angle between subspaces [29]. Under
special conditions the Hausdorff distance between p◦m’s two subspaces and the commensurability
error between their respective embeddings are closely related.

See Figure 12 for a first example, from the Dirichlet product model simulation presented
in Figure 6. Each point in Figure 12 represents a Monte Carlo replicate. We note that the
Hausdorff distance between p◦m’s two subspaces and the commensurability error between their
respective embeddings are strongly correlated. Furthermore, the red points represent replicates
for which the conditional power P [d(ỹ1, ỹ2) > cα|HA,γ1, . . . ,γn] is low – predominantly those
replicates for which Hausdorff distance and commensurability error are large. This demonstrates
the effect of the incommensurability phenomenon on p◦m. The jofc embeddings are not subject
to this deleterious phenomenon.

Additional investigations concerning the superiority of jofc to p◦m due to the incommensu-
rability phenomenon involve this relationship between Hausdorff distance and commensurability
error. Significantly more involved investigations are required when, as is the case for proper
text document analysis, one uses a more appropriate dissimilarity (Hellinger distance, or more
generally α-divergence) on the simplex.

Three-Way MDS

Three-way MDS (see, for instance, [11]) addresses a problem superficially similar to joint opti-
mization of fidelity and commensurability, in which a single configuration and two transformation
matrices are identified from two dissimilarity matrices ∆1,∆2. It may be of interest to compare

19



●

●

● ●●
●

●

●
●

●●
●●●

●
●

●
●●

●● ●●
●

●

●●
●

●
●

●
●

●
●

●

●

●
●

●

●●

●
●

●
● ●

●

●

●

●

●

●●
●

●
●

●

●

●
●●

●
●●

●●●
●

●

●
●

●

●
●

●

●●●
●

●

●●
●

●
●

● ●
●

●

●
●●●

●●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●●●

●
●

●

●●●●

●

●
●

●

●
●●

●

●● ●●● ●
● ●●

●

●

●

●
●

●
●

●

●
●●●

●

●

●●●●●
●●

● ●

●

●

●

●
●

●

●

●

●●
●

●

●●●
●●

●●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●
●

●●
●

●

●

●
●

●

●

●

●
● ●

●●
●●

●

●●●
●●

●●

●

●
●
●●

●
●

●

●

●
●

●

●

●●
●●
● ●

●
●

●

●

● ●

●

●●
●●
●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●●●●
●

●
●
●●

●

●●

●

● ●

●

●●●●●

●
●

●●

●

●

●
●

●●

●●
●●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●● ●

●

●

●

●●
●

●
●

●

● ●

●

● ●
● ●●●●●●●●

●●
●

●
●

●

●

●

●

●

●

●●

●
●●

●
●

●
●●●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●●
●●
●
●

●●

●

●●
●

●●
●
●

●
●

● ●
●

●
●

●

●

●●

●

●
●●●
●
●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●●
●

●
●

●

● ●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●●●
●

●
●

●
●●

●

●
●
●

●

●

●

●●

●

●

●●

●

●

●●

●

●
●

●

●
●

●

●
●●●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●●
●●

●

●●

●●

●

● ●
● ●

●

●
●

●

●

●
●

●

●

●
●● ●●

●

●

●

●●
●● ●

●

●●
●●

●

●●●
●

●
●

●
●

●
●

●
●

● ●
●

●
●●●●

●

●

●

●●
●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●
●

●

●

●
●

●
●

●

●●●●
●

●

●
●

●

● ●

●●
●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●●

●
●

●
●

●

●

●●

●

●
●●

●

●
●●●●
●
●

●●

●

●
● ●●

●●
●

●

●

●●
● ●
●●

●

●

●

●

●

●
●●

●●
●●●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

●●
● ●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●
● ●●

●
●●

●
●

●

●●

●●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●●● ●
●

●

●

●

●

●
●

●
●
●
●
●

●

●

●

●

●●
●

●
●●

●●●

●
●

●

● ●

●

●

●

●
●●●

●

●

●
●
●

●●
●

●

●●

●

●
●

●

●

●
●

●

●●

●●

●

●
●

●
●
●

●
● ●

●

●

●

●●

●
●

●

● ●

●

●

●●

●

●●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●●●
●

●

●
●

●
●

●

●

●

●

●

●

●● ●

●
●

●
●

●●

●

●

● ●●

●

●

●

●

●
●

●●●

●

●

●●●●

●

●
●

●●●

●

●

●

●

●
●

●
●

● ●●
●

●
●

●

●
●

●

●

●

0.05 0.10 0.15 0.20 0.25

0.
1

0.
2

0.
3

0.
4

Commensurability Error

H
au

sd
or

ff 
D

is
ta

nc
e

Figure 12: Commensurability error and Hausdorff distance on the Grassmannian Manifold for our
Dirichlet product model simulation (Figure 6). Strong correlation is evident. Furthermore, the red
points represent replicates for which the conditional power P [d(ỹ1, ỹ2) > cα|HA,γ1, . . . ,γn] is low –
predominantly those replicates for which Hausdorff distance and commensurability error are large.

and contrast our omnibus embedding methodology with various instantiations of three-way MDS
– particularly the identity model presented in [30].

6.1 Conclusions
In conclusion, we have presented an omnibus embedding methodology for joint optimization
of fidelity and commensurability that allows us to address the manifold matching problem by
jointly identifying embeddings of multiple spaces into a common space. Such a joint embedding
facilitates statistical inference in a wide array of disparate information fusion applications. We
have investigated this methodology in the context of simple statistical inference tasks, and com-
pared and contrasted with competing fidelity-only and commensurability-only methodologies,
demonstrating the superiority of our joint optimization.

We have focused on a simple setting and simple choices for various methodological options.
Many variations and generalizations are possible, but the presentation here provides the core
methodological instantiation.
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